

Actuador térmico con memoria de forma

Ángulo para la descarga de aire

Unidad rotacional para reducción de alcance

TJN en blanco RAL 9010

TJN con envolvente exterior

Toberas de largo alcance Serie TJN

Optimizada acústica y técnicamente para instalación en pared y en conductos, tanto rectangulares como circulares, ajustable - fabricada en plástico

La nueva tobera de largo alcance TJN ha sido optimizada acústicamente y contribuye con a mayor eficiencia energética.

- Tamaños nominles: 160, 200, 250, 315 y 400 mm
- Rango de caudales de aire 20 1000 l/s o 72 3600 m³/h
- Partes vistas fabricadas en polímero de alta calidad con posibilidad de acabado en RAL aluminio claro o blanco puro
- Contorno de tobera optimizado
- Ángulo de impulsión ajustable, limitable y bloqueable mediante escala oculta entre –30 y +30°
- Fácil instalación gracias a la fijación por cierre de bayoneta (oculta) tras el aro frontal

Equipamiento opcional y accesorios

- Cinco tamaños disponibles, cada uno de ellos para instalación en conducto (circular o rectangular) o conexión directa
- Unidad rotacional con deflectores de aire optimizados de perfil de diente de sierra y tapón para reducción de alcance
- Actuador eléctrico externo de peso reducido
- El actuador eléctrico permite su integración en el BMS centralizado
- Actuador térmico integrado con memoria de forma para ajuste automático del ángulo de salida de aire
- Todas las ejecuciones disponen de envolvente exterior

Serie		Página
TJN	Información general	TJN – 2
	Funcionamiento	TJN – 4
	Datos técnicos	TJN – 7
	Selección rápida	TJN – 8
	Texto para especificación	TJN – 9
	Código de pedido	TJN – 10
	Ejecuciones	TJN – 11
	Dimensiones y pesos	TJN – 14
	Detalles de producto	TJN – 18
	Detalles de instalación	TJN – 19
	Información general y definiciones	TJN - 23

Aplicación

Aplicación

- Toberas serie TJN para impulsión de aire a largas distancias
- Adecuado para industria, gimnasios, teatros y salas de conferencias, así como para otros espacios como aeropuertos, estaciones de tren y centros comerciales
- Elemento de atractivo diseño para la propiedad y el arquitecto que satisface las exigencias estéticas de cualquier espacio
- Para impulsión de aire a la sala con un diferencial de temperaturas desde
 12 hasta +20 K
- Ángulo para impulsión de aire desde
 30 a +30°, para ajuste entre modo calefacción y refrigeración
- Para instalación directa a conducto circular o como ramificación de conductos circulares o rectangulares

Características especiales:

- Fácil instalación gracias a la fijación por cierre de bayoneta (oculta) tras el aro frontal
- Unidad rotacional con deflectores de aire optimizados de perfil de diente de sierra y tapón para reducción de alcance
- Ángulo de impulsión ajustable, limitable y bloqueable mediante escala oculta entre -30 y +30°
- Opcionalmente con actuador eléctrico o térmico

Tamaños nominales

- 160, 200, 250, 315, 400 mm

Descripción

Ejecuciones

Conexión

- Para conductos circulares (instalación directa)
- K: Para conducto rectangular
- R: Para conducto circular

Actuador

- Ajuste manual
- E*: Actuador eléctrico
- T1: Actuador térmico

Partes y características

- Tobera de diseño optimizado ángulo de impulsión de airea ajustable (desde –30 hasta +30°, en incrementos de 5°)
- Brida con indicador de posición (escala) y posiciones ajustables, oculta tras el aro frontal
- Carcasa de tobera esférica con boca
- Carcasa exterior (opcional)
- Pieza de conexión a conducto circular y rectangular (opcional)
- Actuador (opcional)

Accesorios para control

C: Carcasa exterior

Accesorios

- Unidad rotacional para reducción de alcance

Accesorios opcionales

 Diferencia de temperatrua del módulo de control TDC

Características constructivas

- Boca de conexión para redes de conductos circulares en cumpliminento con EN 1506 o EN 13180
- Boca con doble junta de labio

Materiales y acabados

- Brida, aro frontal, unidad rotacional y tapón en plástico ABS, resistentes a la llama UL 94, V-0
- Carcasa de tobera esférica de chapa de acero galvanizado
- Piezas para conexión a conducto circular o rectangular fabricadas en chapa de acero galvanizado
- Junta de labio doble de goma
- Acabado en color blanco RAL 9010
- S1: Acabado en color blanco RAL 9006

Normativas y pautas

 La potencia sonora del ruido regenerado por el aire se mide en cumplimiento con EN ISO 5135.

Mantenimiento

- No requieren de mantenimiento, ya que la ejecución y los materiales no son susceptibles al desgaste
- Acceso para inspección y limpieza en cumplimiento con VDI 6022

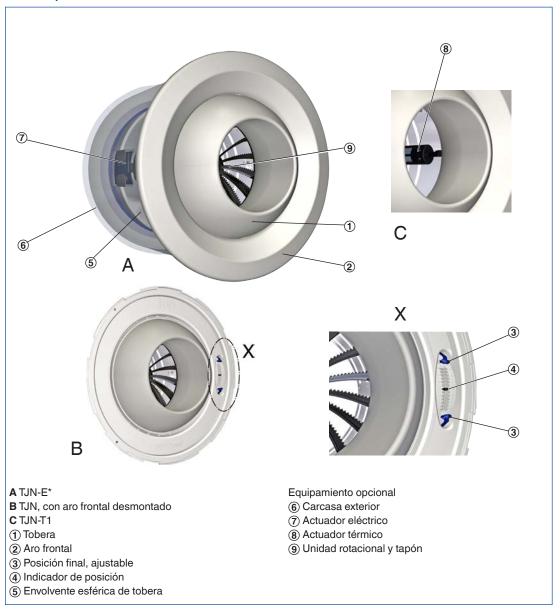
Descripción de funcionamiento

Las toberas de largo alcance son la perfecta solución para instalaciones donde el aire debe recorrer una gran distancia hasta la zona de ocupación. Permiten variar el ángulo de impulsión de aire, así como la dirección del salida del flujo de aire, funcionando tanto en calefacción como en refrigeración. Rango de diferencias de temperatura del aire que se impulsa a la sala desde –12 hasta +20 K.

Refrigeración

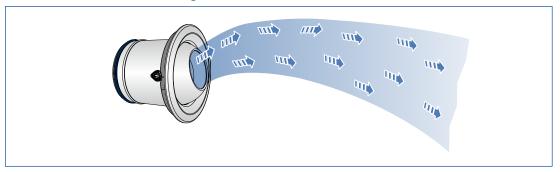
El modo refrigeración permite una impulsión positiva de aire, en ángulo de hasta 30°. El aire es impulsado hacia el techo, sin embargo, debido a que el aire frío posee una mayor densidad, el aire impulsado desde la tobera cae hacia al suelo. Cuando el caudal de aire impulsado alcanza la zona de ocupación, el diferencial de temperatura entre el aire impulsado y el de la sala, y la velocidad del aire se reducen, generando un elevado confort.

El principio de funcionamiento permite que el aire recorra grandes distancias.

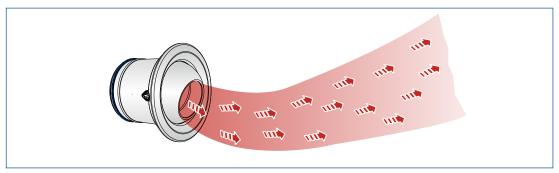

Calefacción

El modo calefacción permite una impulsión negativa de aire, en ángulo de hasta –30°, o incluso inferior. La impulsión del flujo de aire se direcciona hacia la zona de ocupación. Debido a una densidad menor del aire caliente, la masa de aire flota en el ambiente. Cuando el aire impulsado alcanza la zona de ocupación, la diferencia existente entre el aire impulsado y el de la sala y la velocidad del flujo de aire se reducen considerablemente.

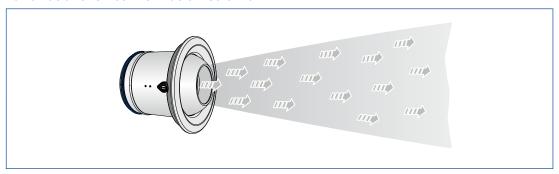
El ángulo para salida de aire se puede modificar de manera manual, o mediante actuador eléctrico o térmico.


Una unidad rotacional y un tapón (opcional) permiten la reducción del alcance un 65 % o un 75 %.

Vista esquemática de una tobera TJN



Patrones de aire


Patrón de aire TJN en modo refrigeración

Patrón de aire TJN en modo calefacción

Patrón de aire TJN con ventilación isoterma

Patrón de aire TJN con descarga vertical de aire, modo calefacción

Tamaños nominales	160, 200, 250, 315, 400 mm
Rango de caudales de aire	20 - 1000 l/s o 72 - 3600 m ³ /h
Ángulo de salida de aire	entre –30 y +30°
Diferencia de temperatura de impulsión	entre –12 y +20 K

Las tablas de selección rápida proporcionan un buen resumen de los caudales dea ire y sus correspondientes niveles de potencia sonora y pérdida de carga.

Con nuestro programa Easy Product Finder se pueden generar técnicos para otras configuraciones de funcionamiento.

TJN, potencia sonora y pérdida total de carga

					V	L	
Tamaño	Caudal de aire	Caudal de aire	Δp_t	L _{WA}	0,5 m/s	1,0 m/s	
Idilidilo					L		
	I/s	m³/h	Pa	dB(A)	n	1	
	20	72	9	<15	<5	<5	
160	40	144	34	<15	8	<5	
100	60	216	76	15	13	6	
	80	288	135	26	17	8	
	35	126	9	<15	6	<5	
200	70	252	35	<15	11	6	
200	105	378	78	19	17	9	
	140	504	138	30	23	11	
	55	198			7	<5	
250	110	396	33	<15	14	7	
200	165	594	75	21	21	11	
	220	792	132	33	28	14	
	90	324	8	<15	9	<5	
315	185	666		<15	18	9	
	265	954	71	24	26	13	
	360	1296	132	36	>30	18	
	155	558	8	<15	12	6	
400	310	1116	33	<15	24	12	
	465	1674	75	27	>30	18	
	620	2232	133	38	>30	24	

Los valores hacen referencia a una descarga de aire con ángulo 0°

L: Alcance con funcionamiento isotermo, sin reducción de la distancia de alcance

Ejemplo de dimensionado

Datos iniciales

 \dot{V} = 180 l/s (648 m³/h) Nivel máximo de potencia sonora 35 dB(A)

Selección rápida

Serie TJN

Tamaños nominales: 250, 315 Seleccionado: TJN/250 Este texto para especificación describe las propiedades generales del producto. Con nuestro programa Easy Product Finder se pueden generar textos para otras ejecuciones de producto.

Toberas de largo alcance regulables para espacios de interior de gran volumen, como halls y plantas de montaje. Impulsión de aire con elevado alcance y excelentes propiedades acústicas. Ángulo de inclinación de la tobera desde –30 hasta +30° para una impulsión horizontal de aire. Ángulo de impulsión ajustable, limitable y bloqueable mediante escala oculta. Integradas por una tobera de impulsión de aire de forma esférica, brida, aro frontal y boca. Para instalación directa a conducto circular o como ramificación de conductos circulares o rectangulares.

Características especiales:

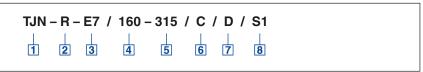
- Fácil instalación gracias a la fijación por cierre de bayoneta (oculta) tras el aro frontal
- Unidad rotacional con deflectores de aire optimizados de perfil de diente de sierra y tapón para reducción de alcance
- Ángulo de impulsión ajustable, limitable y bloqueable mediante escala oculta entre -30 y +30°
- Opcionalmente con actuador eléctrico o térmico

Materiales y acabados

- Brida, aro frontal, unidad rotacional y tapón en plástico ABS, resistentes a la llama UL 94, V-0
- Carcasa de tobera esférica de chapa de acero galvanizado
- Piezas para conexión a conducto circular o rectangular fabricadas en chapa de acero galvanizado
- Junta de labio doble de goma
- Acabado en color blanco RAL 9010
- S1: Acabado en color blanco RAL 9006

Datos técnicos

- Tamaños nominales: 160, 200, 250, 315, 400 mm
- Rango de caudal de aire: desde
 20 hasta 1000 l/s o desde 72 hasta 3600 m³/h
- Dirección de salida de aire regulable: entre -30 y +30°
- Diferencia de temperatura del aire impulsado:
 12 hasta +20 K


Dimensiones

_	V		
	[m ³ /h]		
_	Δp_{t}	 	
	[Pa]		
_			

Ruido de aire generado

-	L _{WA}	
	[dB(A)]	

TJN

1 Serie

TJN Tobera orientable de largo alcance

2 Pieza de conexión

Sin entrada: vacío

K Para conducto rectangular

R Para conducto circular, indicar diámetro de conducto 5

3 Actuador

Sin código: ajuste manual

E7 230 V AC, 3-puntosE8 24 V AC/DC, 3-puntos

E9 24 V AC/DC, proporcional 2 – 10 V DC

T1 Actuador térmico

4 Tamaño [mm]

160

200

250

315

400

5 Diámetro de conducto circular [mm]

Indicar sólo con variante -R

315 Sólo para tamaño nonimal 160

500 Sólo hasta tamaño nominal 315

630 800

6 Accesorios

Sin entrada: vacío

C Carcasa exterior

7 Accesorios

Sin entrada: vacío

 Unidad rotacional y tapón, para reducción de alcance

8 Acabado

Sin código: RAL 9010, blanco S1 RAL 9006, aluminio blanco

Ejemplo para pedido: TJN-K-E9/250/C/D/S1

Serie TJN

Pieza de conexión Para conducto rectangular

Actuador Proporcional, 2 – 10 V DC, 24 V AC

Tamaño 250 mm

Accesorios para control Carcasa exterior

Accesorios Unidad rotacional y tapón para reducción de alcance

Acabado Aluminio blanco RAL 9006

TJN

TJN en color blanco RAL 9010

TJN/.../S1

TJN en color blanco RAL 9006

TJN

TJN para instalación directa en conductos circulares

TJN-K

TJN para conexión a conductos rectangulares

TJN-R

TJN para conexión a conductos circulares

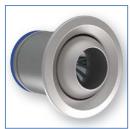
TJN-K/.../C


TJN para conexión a conductos rectangulares, con envolvente exterior

TJN-R/...C

TJN para conexión a conductos circulares, con envolvente exterior

TJN


Ajuste manual

TJN-E*

Actuador eléctrico

TJN-T1

Actuador térmico

Alcance del 100 %

TJN sin unidad rotacional

Alcance del 75 %

TJN con unidad rotacional

Alcance del 65 %

TJN con unidad rotacional y tapón

Tamaños nominales

- 160, 200, 250, 315, 400 mm

Partes y características

- Envolvente esférica con boca

Características constructivas

- Boca de conexión para redes de conductos circulares en cumpliminento con EN 1506 o EN 13180
- Boca con doble junta de labio

TJN

Elevado nivel de confort

En colaboración con famosos arquitectos y diseñadores de renombre, TROX ha desarrollado difusores de techo, pared, peldaño y suelo, así como rejillas de ventilación, que destacan no sólo por su diseño, sino por a su vez, también satisfacer las exigencias más elevadas en materia de ventilación y acústica.

Variante

Tobera para conexión a conducto circular

TJN/.../C

Elevado nivel de confort

En colaboración con famosos arquitectos y diseñadores de renombre, TROX ha desarrollado difusores de techo, pared, peldaño y suelo, así como rejillas de ventilación, que destacan no sólo por su diseño, sino por a su vez, también satisfacer las exigencias más elevadas en materia de ventilación y acústica.

Variante

- Tobera para conexión a conducto circular
- Con carcasa exterior

Tamaños nominales

- 160, 200, 250, 315, 400 mm

Partes y características

- Envolvente esférica con boca
- Carcasa exterior para instalación vista

Características constructivas

- Boca de conexión para redes de conductos circulares en cumpliminento con EN 1506 o EN 13180
- Boca con doble junta de labio

TJN-K

Variante

Tobera con pieza de conexión a conducto rectangular

Tamaños nominales

- 160, 200, 250, 315, 400 mm

Partes y características

Pieza de conexión a conducto rectangular

Características constructivas

- Pieza de conexión con brida para fijación mediante tornillos al conducto

PD – TJN – 12 TROX TECHNIK

TJN-K/.../C

Variante

- Tobera con pieza de conexión a conducto rectangular
- Con carcasa exterior

Tamaños nominales

- 160, 200, 250, 315, 400 mm

Partes y características

- Pieza de conexión a conducto rectangular
- Carcasa exterior para instalación vista

Características constructivas

- Pieza de conexión con brida para fijación mediante tornillos al conducto
- Envolvente exterior con ribeteado saliente para fijación con tornillos al conducto

TJN-R

Variante

 Tobera con pieza de conexión a conducto circular

Tamaños nominales

- 160, 200, 250, 315, 400 mm

Partes y características

- Pieza de conexión (brida) a conducto circular

Características constructivas

- Pieza de conexión con brida para fijación mediante tornillos al conducto
- Pieza de conexión (brida) en cumplimiento con EN 1506 o EN 13180

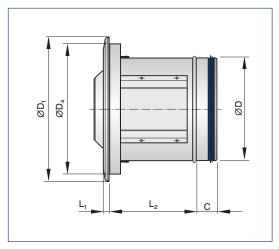
TJN-R/.../C

Variante

- Tobera con pieza de conexión a conducto circular
- Con carcasa exterior

Tamaños nominales

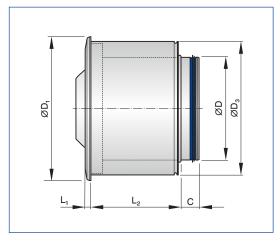
- 160, 200, 250, 315, 400 mm


Partes y características

- Pieza de conexión (brida) a conducto circular
- Carcasa exterior para instalación vista

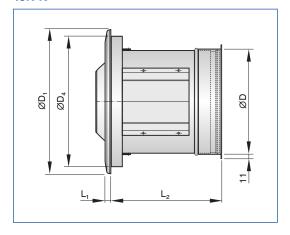
Características constructivas

- Pieza de conexión con brida para fijación mediante tornillos al conducto
- Pieza de conexión (brida) en cumplimiento con EN 1506 o EN 13180
- Envolvente exterior con ribeteado saliente para fijación con tornillos al conducto


TJN

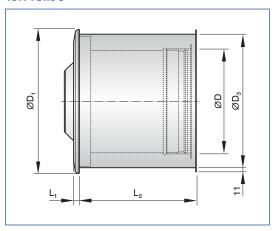
TJN

	TJ	IN	TJN	I-E*	TJN	I-T1					
Tamaño	L ₂	m	L ₂	m	L ₂	m	ØD₁	L ₁	$ØD_4$	ØD	С
Iamano	mm	kg	mm	kg	mm	kg	mm	mm	mm	mm	mm
160	192	1,9	192	2,1	252	2,3	258	15	227	158	50
200	200	2,3	200	2,5	260	2,8	298	14	263	198	50
250	210	3,1	210	3,3	270	3,7	348	14	315	248	50
315	225	4,0	225	4,2	285	4,8	413	15	379	313	50
400	235	4,6	235	4,8	295	5,5	501	16	468	398	50


TJN/.../C

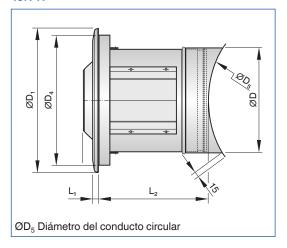
TJN/.../C

	TJN/	/C	TJN-E	*//C	TJN-T	1//C					
Tamaño	L ₂	m	L_2	m	L_2	m	$ØD_1$	L ₁	OD_3	ØD	С
Iamano	mm	kg	mm	kg	mm	kg	mm	mm	mm	mm	mm
160	192	2,7	192	2,9	252	3,4	258	15	228	158	50
200	200	3,4	200	3,6	260	4,2	298	14	265	198	50
250	210	4,4	210	4,6	270	5,3	348	14	316	248	50
315	225	5,8	225	6,0	285	7,0	413	15	381	313	50
400	235	8,0	235	8,2	295	9,5	501	16	469	398	50


TJN-K

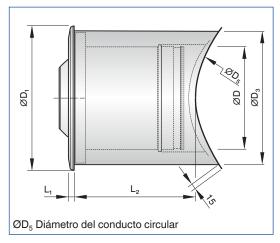
TJN-K

	1UT	1-K	TJN-	K-T1	TJN-E	:*//C					
Tamaño	L_2	m	L ₂	m	L ₂	m	ØD₁	L ₁	$ØD_4$	ØD	С
Iamano	mm	kg	mm	kg	mm	kg	mm	mm	mm	mm	mm
160	248	2,1	308	2,5	248	2,3	258	15	227	158	50
200	257	3,2	317	3,7	257	3,4	298	14	263	198	50
250	265	3,4	325	4,0	265	3,6	348	14	315	248	50
315	281	4,6	341	5,4	281	4,8	413	15	379	313	50
400	292	6,5	352	7,4	292	6,7	501	16	468	398	50


TJN-K/.../C

TJN-K/.../C

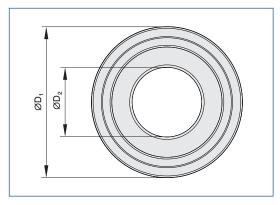
	TJN-K	://C	TJN-K-	E*//C	TJN-K-	Г1//С					
Tamaño	L_2	m	L ₂	m	L ₂	m	$ØD_1$	L ₁	$ØD_3$	ØD	С
iailiailo	mm	kg	mm	kg	mm	kg	mm	mm	mm	mm	mm
160	258	3,5	258	3,7	318	4,2	258	15	228	158	50
200	267	4,3	267	4,5	327	5,1	298	14	265	198	50
250	276	5,5	276	5,7	336	6,4	348	14	316	248	50
315	291	7,2	291	7,4	351	8,4	413	15	381	313	50
400	302	9,9	302	10,1	362	11,4	501	16	469	398	50


TJN-R

TJN-R

	1UT	N-R	TJN-	R-E*	TJN-	R-T1					
Tamaño	L ₂	m	L ₂	m	L ₂	m	ØD₁	L ₁	$ØD_4$	ØD	С
Iamano	mm	kg	mm	kg	mm	kg	mm	mm	mm	mm	mm
160	248	2,1	248	2,3	308	2,5	258	15	227	158	50
200	257	3,2	257	3,4	317	3,7	298	14	263	198	50
250	265	3,4	265	3,6	325	4,0	348	14	315	248	50
315	281	4,6	281	4,8	341	5,4	413	15	379	313	50
400	292	6,5	292	6,7	352	7,4	501	16	468	398	50

TJN-R/.../C


TJN-R/.../C

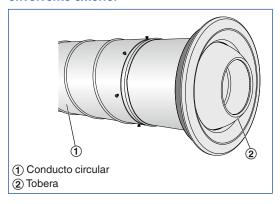
	TJN-F	?//C	TJN-R-	E*//C	TJN-R-	Г1//С					
Tamaño	L_2	m	L_2	m	L_2	m	$ØD_1$	L ₁	OD_3	ØD	С
Iamano	mm	kg	mm	kg	mm	kg	mm	mm	mm	mm	mm
160	261	3,5	261	3,7	321	4,2	258	15	228	158	50
200	270	4,3	270	4,5	330	5,1	298	14	265	198	50
250	279	5,5	279	5,7	339	6,4	348	14	316	248	50
315	294	7,2	294	7,4	354	8,4	413	15	381	313	50
400	305	9,9	305	10,1	365	11,4	501	16	469	398	50

Diámetro de conducto circular ØD₅ [mm]

	315	500	630	800
Tamaño				
160	+	+	+	+
200		+	+	+
250		+	+	+
315		+	+	+
400			+	+

Vista frontal TJN

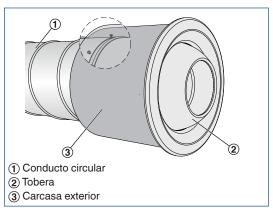
TJN


Tamaño	ØD₁	$\emptyset D_2$	A _{eff}
	mm	mm	m²
160	258	82	0,00500
200	298	108	0,00850
250	348	136	0,01350
315	413	174	0,02250
400	501	231	0,03850

Instalación y puesta en servicio

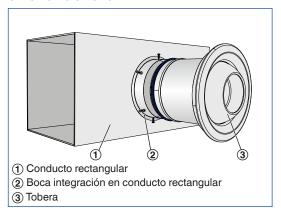
- La correcta orientación para instalación se muestra en la parte superior de la brida
- Para instalación directa en conducto circular o como a conductos circulares y rectangulares
- Si se precisa, el alcance de aire puede modificarse mediante la unidad rotacional, o con la unidad rotacional y un tapón

Los diagramas ilustran como llevar a cabo su instalación.


Instalación en conducto circular, sin envolvente exterior

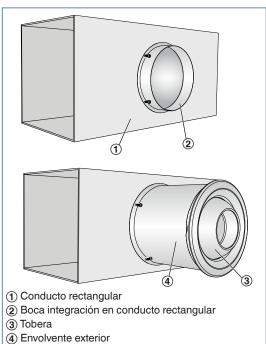
TJN

- Conexión a conducto horizontalFijación por tornillos de la boca al conducto circular


Instalación en conducto circular, con envolvente exterior

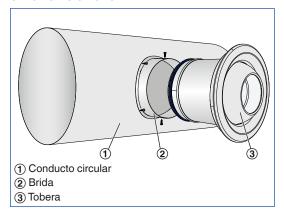
TJN/.../C

- Conexión a conducto horizontal
- Fijación por tornillos de la boca al conducto circular
- Adjunto a la envolvente exterior


Instalación en conductos rectangulares, sin envolvente exterior

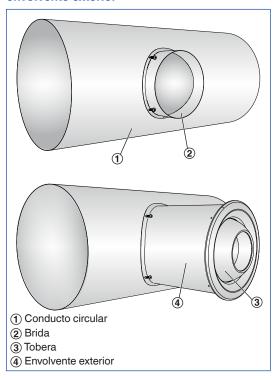
TJN-K

- Conexión a conducto horizontal
- La fijación de la boca o de la pieza de conexión con ribeteado al conducto rectangular se realiza con tornillos


Instalación en conductos rectangulares, con envolvente

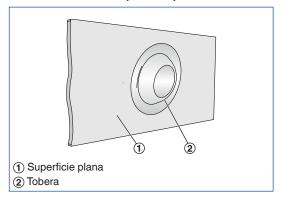
TJN-K/.../C

- Conexión a conducto horizontal
- La fijación de la boca o de la pieza de conexión con ribeteado al conducto rectangular se realiza con tornillos
- Adjunto a la envolvente exterior


Instalación en conducto circular, sin envolvente exterior

TJN-R

- Conexión a conducto horizontal
- La brida se fija con tornillos al conducto circular


Instalacióni en conducto circular, con envolvente exterior

TJN-R/.../C

- Conexión a conducto horizontal
- La brida se fija con tornillos al conducto circular
- Adjunto a la envolvente exterior

Instalación sobre superficie plana

- No conectado a conducto
- La envolvente esférica de la tobera se fija con tornillos da la superficie de instalación para una instalación vista
- Adjunto al aro frontal

Principales dimensiones

ØD₁ [mm]

Diámetro exterior del aro frontal

$ØD_2$ [mm]

Diámetro inferior de tobera (en la apertura para impulsión de aire)

$ØD_3$ [mm]

Diámetro de la envolvente de la tobera

$ØD_4$ [mm]

Anchura nominal de conducto circular, para toberas con brida

L₁ [mm]

Longitud el aro frontal

L_2 [mm]

Logitud de carcasa

m [kg]

Peso

Definiciones

L_{WA} [dB(A)]

Nivel de potencia sonora del ruido de aire generado

[']√ [m³/h] y [l/s]

Caudal de aire

Δt₋ [K]

Diferencia de temperatura de impulsión

Δp_t [Pa]

Pérdida de carga total

$v_L [m/s]$

Velocidad del aire a una distancia L (medida desde el centro del flujo de aire)

L [m]

Distancia del alcance en funcionamiento isotermo, sin reducción de la distancia de alcance

A_{eff} [m²]

Ärea de descarga efectiva de aire

Todas las potencias sonoras están basadas en 1 pW.