Unidades terminales VAV Serie TVRK

Fácil limpieza de los tubos del sensor

Ejecución con brida

Ensayado según VDI 6022

Para aire contaminado

Unidad terminal VAV de ejecución circular fabricada en plástico, adecuada para el aire de retorno contaminado en sistemas de caudal de aire variable

- Carcasa y compuerta de regulación fabricadas en polipropileno ignífugo
- Sensor de presión diferencial desmontable para facilitar su limpieza
- Adecuadas para la regulación del caudal de aire, la presión de la sala o la presión en el conducto
- Componentes electrónicos de control para distintas aplicaciones (Universal y LABCONTROL)
- Adecuados para velocidades de aire de hasta 13 m/s
- Estanquiedad de lama en cumplimiento con EN 1751, clase 3
- Estanqueidad de la carcasa en cumplimiento con EN 1751, clase B

Equipamiento opcional y accesorios

- Con bridas a ambos lados
- Bridas de unión a ambos lados
- Silenciador secundario de plástico Serie CAK para la atenuación del ruido de aire regenerado

Serie		Página
TVRK	Información general	1.1 – 118
	Código de pedido	1.1 – 121
	Datos aerodinámicos	1.1 – 122
	Selección rápida	1.1 – 123
	Dimensiones y pesos – TVRK	1.1 – 124
	Dimensiones y pesos – TVRK-FL	1.1 – 126
	Texto para especificación	1.1 – 128
	Información básica y definiciones	1.5 – 1

Ejecuciones

Ejemplos de producto

Unidad terminal VAV, ejecución TVRK, tamaños nominales 125 – 200

Unidad terminal VAV, ejecución TVRK-FL, tamaños nominales 125 – 200

Unidad terminal VAV, ejecución TVRK, tamaños nominales 250 – 400

Unidad terminal VAV, ejecución TVRK-FL, tamaños nominales 250 – 400

Descripción

Más detalles sobre los componentes de control consultar el capítulo K5 -1.3.

Para mayor información sobre los sistemas LABCONTROL, consultar el catálogo de Sistemas de control.

Aplicación

- Unidad terminal VAV de ejecución circular serie TVRK, fabricada en plástico, preferiblemente para la regulación del caudal de retorno en sistemas de caudal de aire variable
- Control interno del caudal de aire con tensión de alimentación externa
- Adecuada para aire contaminado
- Posibilidad de cierre mediante órdenes imperativas

Ejecuciones

TROX TECHNIK

- TVRK: Unidad terminal VAV
- TVRK-FL: Unidad terminal VAV con bridas a ambos lados

Tamaños nominales

- 125, 160, 200, 250, 315, 400

Accesorios de control

- Controlador Universal: Regulador, transductor de presión diferencial y servomotor para aplicaciones especiales
- LABCONTROL: Componentes de control para sistemas de gestión de aire

Accesorios

Bridas de unión a ambos lados

Accesorios opcionales

 Silenciador secundario de plástico Serie CAK para instalaciones con elevadas exigencias acústicas

Características especiales

- Sensor de presión diferencial integrado desmontable con orificios de 3 mm (resistente al polvo y a la contaminación)
- Unidades ajustadas y comprobadas en fábrica
- El caudal de aire puede ser medido y ajustado en obra. Puede ser necesario el uso de una herramienta adicional

Partes y características

- Fácil instalación y puesta en marcha
- Sensor de medición de presión diferencial del caudal de aire; puede ser extraído para su limpieza
- Compuerta de regulación
- Componentes de control montados en fábrica
- Unidades ajustadas y comprobadas en fábrica en banco de pruebas antes de su suministro
- Los datos del caudal de regulación se indican en la etiqueta que la unidad lleva adherida en su exterior
- Elevada precisión de medida (incluso con codos R=1D en la entrada de aire)

Características constructivas

- Carcasa circular
- Cuello de conexión adecuado para redes de conducto circulares en cumplimiento con DIN 8077
- Ambos cuellos con mismo diámetro
- Posición de la compuerta de regulación visible desde el exterior

Materiales y acabados

- Carcasa y compuerta de regulación fabricadas en polipropileno ignífugo (PPs)
- Sensor de presión diferencial y casquillos planos de polipropileno (PP)
- Junta de la compuerta de regulación en caucho de cloropreno (CR)

Instalación y puesta en marcha

 Orientación de instalación, tal y como se indica en la etiqueta

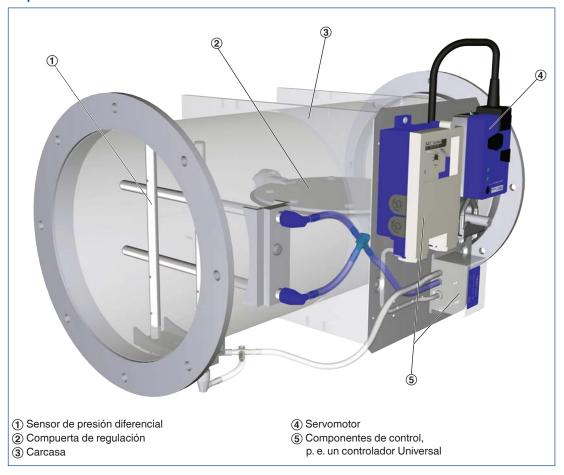
Normativas y pautas

- Higiénico conforme a la normativa VDI 6022
- Estanquiedad de lama en cumplimiento con EN 1751, clase 3
- Cumple con las exigencias generales de DIN 1946, parte 4, relativas a la estanqueidad admisible de la lama
- Estanqueidad de la carcasa en cumplimiento con EN 1751, clase B

Mantenimiento

- No requiere de mantenimiento, ya que la ejecución y los materiales no son susceptibles al desgaste
- Se recomienda realizar la puesta a cero del transductor de presión diferencial al menos una vez al año

Datos técnicos


Tamaños nominales	125 – 400 mm
Donne de coudeles de cive	25 – 1680 l/s
Rango de caudales de aire	90 – 6048 m³/h
Rango de regulación de caudal de aire	aprox. 17 – 100 % del nivel de caudal nominal de aire
Presión diferencial	5 – 1500 Pa
Temperatura de funcionamiento	10 – 50 °C

Funcionamiento

Descripción del funcionamiento

La unidad terminal VAV se equipa con un sensor de presión diferencial para la medición del caudal de aire. Los componentes de control (accesorios) incluyen un transductor de presión diferencial que convierte la diferencia de presión (presión efectiva) en una señal eléctrica, un regulador y un servomotor; la regulación puede llevarse a cabo con componentes individuales (Universal o LABCONTROL). En la mayoría de las aplicaciones, el valor del punto de consigna proviene de un regulador de temperatura de sala. El controlador compara el valor real con el de ajuste, y modifica la señal de regulación del servomotor en caso de que exista una diferencia entre ambos valores.

Esquema de una unidad TVRK

Código de pedido

TVRK

1 Serie

TVRK Unidad terminal VAV de plástico

2 Brida

Sin código: vacío
FL Bridas a ambos lados

3 Tamaño [mm]

125

160

200

250 315

400

4 Accesorios

Sin código: vacío

GK Bridas de unión a ambos lados

5 Accesorios de control

Ejemplo

BB3 Controlador Universal con transductor de presión diferencial estática

6 Modo de funcionamiento

E Individual

M Maestro

S Esclavo

F Valor constante

7 Tensión de alimentación

Para señales de mando y valor real

0 0 - 10 V DC

2 2 - 10 V DC

8 Caudales de aire [m³/h o l/s]

 $\dot{V}_{mín} - \dot{V}_{máx}$ ajustados en fábrica

9 Posición de la compuerta de regulación

Sólo con servomotores con muelle de retorno

NO Sin tensión compuerta abiertaNC Sin tensión compuerta cerrada

Ejemplos de pedido

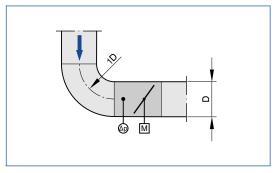
TVRK/160/BB3/E2/200-900 m³/h

Rango de caudales

La presión diferencial mínima de las unidades terminales VAV es un factor importante a la hora de diseñar la red de conductos de aire y controlar la velocidad del ventilador.

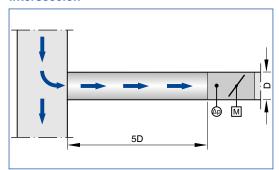
Se deberá garantizar suficiente presión disponible en la red de conductos para todas las condiciones de funcionamiento y unidades terminales. Los puntos de medición para el control de la velocidad del ventilador deberán ser seleccionados acordemente.

Rango de caudales de aire y valores mínimos de presión diferencial


			1	2	3	4	
Tamaño nominal	V	<i>(</i>		ΔV			
	I/s	m³/h		± %			
	25	90	5	5	5	5	9
125	60	216	15	20	20	20	7
123	105	378	45	50	55	60	6
	150	540	90	100	110	115	5
	40	144	5	5	5	5	9
160	80	288	10	10	10	15	8
100	145	522	30	30	35	35	7
	250	900	80	90	95	100	5
	65	234	5	5	5	5	9
200	180	648	15	15	20	20	7
200	310	1116	45	45	50	50	5
	405	1458		75	80	85	5
	95	342	5	5	5	5	9
250	270	972	10	15	15	15	7
200	470	1692	30	35	35	40	5
	615	2214	50	55	60	65	5
	155	558	5	5	5	5	9
315	425	1530	5	10	10	10	7
	740	2664	5	25	25	30	6
	1030	3708	5	45	50	50	5
	255	918	5	5	5	5	9
400	715	2574	10	10	10	10	7
	1250	4500		25	25	30	6
	1680	6048	40	45	45	50	5

- 1 TVRK
- 2 TVRK con silenciador secundario CAK, aislamiento de 50 mm, longitud 500 mm
- 3 TVRK con silenciador secundario CAK, aislamiento de 50 mm, longitud 1000 mm
- (4) TVRK con silenciador secundario CAK, aislamiento de 50 mm, longitud 1500 mm

Condiciones de entrada de aire


La precisión ΔV de medida del caudal de aire se cumple en la entrada de aire mediante conductos rectos. Codos, intersecciones o estrechamientos/ ensanchamientos del conducto principal, producen turbulencias que pueden afectar a la medición. Las conexiones a conducto, p.e. bifurcaciones del conducto principal deben cumplir con lo exigido en la norma EN 1505. En algunos casos, se precisa de secciones rectas de conducto a la entrada de la unidad.

Codo

Un codo con un radio de curvatura de 1D – sin un tramo recto de conducto antes de la unidad VAV – tan apenas afecta a la precisión del caudal de aire definido.

Intersección

Una intersección produce fuertes turbulencias. Sólo podrá alcanzarse la precisión del caudal de aire definido $\Delta \dot{V}$ con un tramo de conducto recto de al menos 5D a la entrada de la unidad. Longitudes de conducto más cortas a la entrada de la unidad requieren de una chapa perforada en la bifurcación y antes de la unidad terminal VAV. Si no existe un tramo recto antes, la regulación no será estable, incluso con la chapa perforada.

Ruido regenerado

Las tablas de selección rápida proporcionan un buen resumen de los niveles de presión sonora que pueden alcanzarse en el local. Se podrán calcular otros valores intermedios interpolando. El programa de diseño Easy Product Finder ofrece la posibilidad de cálculo de valores intermedios precisos y el espectro sonoro.

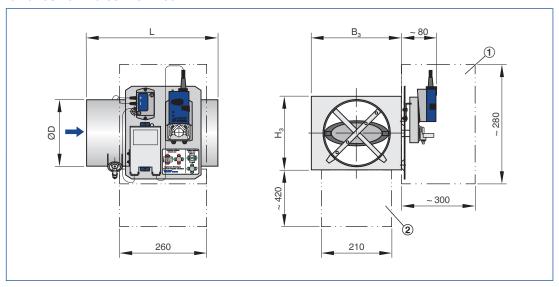
El primer criterio de selección para el tamaño nominal es la definición de los caudales reales $\dot{V}_{\text{mín}}$ y $\dot{V}_{\text{máx}}$. Las tablas de selección rápida están basadas en niveles de atenuación acústica admisibles. Si el nivel de presión sonora supera el nivel requerido, se deberá instalar una unidad terminal VAV de mayor tamaño y/o un silenciador adicional.

Selección rápida del nivel de presión sonora del ruido regenerado en [dB(A)]
Tabla de selección rápida: Nivel de presión sonora con una presión diferencial de 50 Pa

Tamaño	Ý	,		Ruido radiado por la carcasa					
nominal			1	2	3	4	1		
			L _{PA}		L _{PA1}		L _{PA2}		
	I/s	m³/h		dB(A)					
	25	90	34	19	<15	<15	17		
125	60	216	44	30	25	20	27		
123	105	378	51	38	32	28	32		
	150	540	55	41	35	31	37		
	40	144	36	23	18	<15	21		
160	80	288	42	31	27	23	28		
100	145	522	49	37	34	30	33		
	250	900	53	41	38	34	40		
	65	234	44	33	28	25	33		
200	180	648	44	33	28	25	34		
200	310	1116	43	33	29	26	35		
	405	1458	41	33	30	29	35		
	95	342	39	29	23	19	28		
250	270	972	45	35	31	27	35		
230	470	1692	44	35	30	27	37		
	615	2214	44	35	31	29	39		
	155	558	39	29	24	21	29		
315	425	1530	46	37	33	29	40		
013	740	2664	50	41	37	33	45		
	1030	3708	53	44	40	37	50		
	255	918	37	29	25	22	30		
400	715	2574	44	37	33	30	40		
400	1250	4500	49	42	38	36	46		
	1680	6048	51	44	40	38	50		

- ① TVRK
- 2 TVRK con silenciador secundario CAK, aislamiento de 50 mm, longitud 500 mm
- 3 TVRK con silenciador secundario CAK, aislamiento de 50 mm, longitud 1000 mm
- TVRK con silenciador secundario CAK, aislamiento de 50 mm, longitud 1500 mm

Descripción



Unidad terminal VAV, ejecución TVRK, tamaños nominales 125 – 200

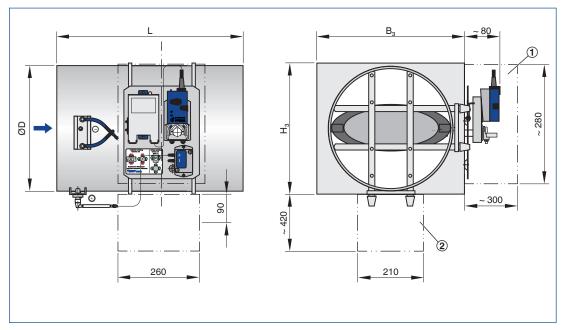
- Unidad terminal VAV para regulación de caudales de aire variables
- Cuello de conexión

Dimensiones

Croquis dimensional de una unidad TVRK, tamaños nominales 125 – 200

Tamaño nominal	ØD	L B ₃		H ₃	m	
		kg				
125	125	394	195	145	4,5	
160	160	394	230	180	4,8	
200	200	394	270	220	5,2	

Descripción



Unidad terminal VAV, ejecución TVRK, tamaños nominales 250 – 400

- Unidad terminal VAV para regulación de caudales de aire variables
 - Cuello de conexión

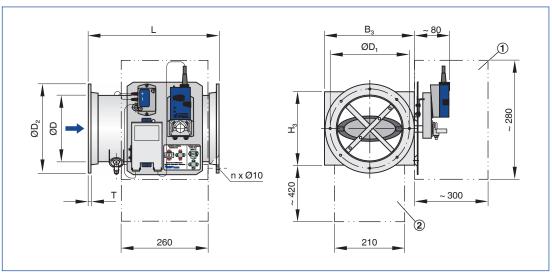
Dimensiones

Croquis dimensional de una unidad TVRK, tamaños nominales 250 – 400

Tamaño nominal	ØD	ØD L B ₃ H ₃							
		kg							
250	250	394	320	270	6,4				
315	315	594	385	335	8,5				
400	400	594	470	420	10,7				

1

Descripción



Unidad terminal VAV, ejecución TVRK-FL, tamaños nominales 125 – 200

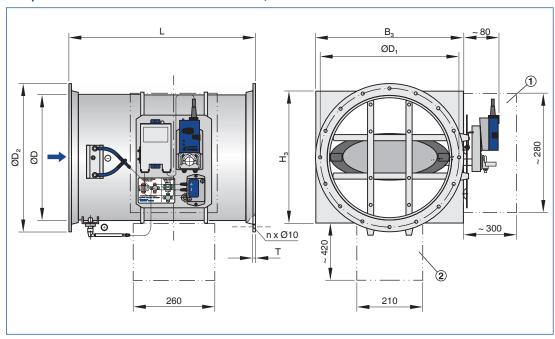
- Unidad terminal VAV para regulación de caudales de aire variables
- Con bridas para su desmontaje de la red de conductos

Dimensiones

Croquis dimensional de una unidad TVRK-FL, tamaños nominales 125 – 200

Tamaño nominal	ØD	L	B ₃	H ₃	ØD₁	Т	m		
Hommai			m		mm	kg			
125	125	400	195	145	165	185	8	8	4,7
160	160	400	230	180	200	230	8	8	5,2
200	200	400	270	270	240	270	8	8	5,7

Descripción



Unidad terminal VAV, ejecución TVRK-FL, tamaños nominales 250 – 400

Dimensiones

- Unidad terminal VAV para regulación de caudales de aire variables
 - Con bridas para su desmontaje de la red de conductos

Croquis dimensional de una unidad TVRK-FL, tamaños nominales 250 – 400

Tamaño nominal	ØD	L	B_3	H ₃	ØD ₁	$\emptyset D_2$	n	Т	m
Hommai			m	m				mm	kg
250	250	400	320	270	290	320	12	8	7,0
315	315	600	385	335	350	395	12	10	9,4
400	400	600	470	420	445	475	16	10	11,9

Texto para especificación

1

Descripción estándar

Este texto para especificación describe las propiedades generales del producto. Con nuestro programa Easy Product Finder se pueden generar textos para otras ejecuciones de producto.

Unidad terminal VAV de ejecución circular fabricada en plástico PPs, para sistemas de caudal de aire variable y constante, adecuada para extracción de aire y disponible en 6 tamaños nominales. Elevada precisión de medida (incluso con un codo R = 1D en la entrada de aire). Fácil instalación y puesta en marcha. Cada unidad cuenta con un sensor de presión diferencial para medición del caudal de aire y compuertas de regulación.

Componentes de control montados en fábrica. Sensor de presión diferencial con orificios para medición de 3 mm

(resistente al polvo y la contaminación). Cuello de conexión adecuado para redes de conducto en cumplimiento con DIN 8077. Posición de la compuerta de regulación visible desde el exterior.

Estanqueidad de la lama en cumplimiento con EN 1751, clase 3

Estanqueidad de la carcasa en cumplimiento con EN 1751, clase B.

Higiénico conforme a la normativa VDI 6022

Características especiales

- Sensor de presión diferencial integrado desmontable con orificios de 3 mm (resistente al polvo y a la contaminación)
- Unidades ajustadas y comprobadas en fábrica
- El caudal de aire puede ser medido y ajustado en obra. Puede ser necesario el uso de una herramienta adicional

Materiales y acabados

- Carcasa y compuerta de regulación fabricadas en polipropileno ignífugo (PPs)
- Sensor de presión diferencial y casquillos planos de polipropileno (PP)
- Junta de la compuerta de regulación en caucho de cloropreno (CR)

Datos técnicos

- Tamaños nominales: 125 400 mm
- Rango de caudales de aire:
 25 1680 l/s o 90 6048 m³/h
- Rango de regulación de caudal de aire, aprox., 17 – 100 % del caudal de aire nominal
- Presión diferencial: 5 1500 Pa

Accesorios de control

Control de caudal variable con controlador electrónico Universal mediante una señal de control externa; el valor real de la señal se puede integrar en el BMS.

- Tensión de alimentación 24 V AC/DC
- Señales de mando 0 10 V DC ó 2 10 V DC
- Posibilidad de comandos imperativos mediante interruptores libres de tensión: ABIERTO, CERRADO, V_{mín} y V_{máx}
- Precisión de medidas aprox.,
 entre 17 100 % del caudal de aire nominal

Dimensiones

Ÿ	[m ³ /h]
Δp _{st}	[Pa
L _P A Ruido regenerado	[dB(A)]
L _P A Ruido radiado por la carcasa	[dB(A)

0	pci	on	es	de	ped	ido
_	ро.	•	-	-	200	

4 1	ш.		r	-
		т.	11	۳

TVRK Unidad terminal VAV de plástico

2 Brida

Sin código: vacío

FL Bridas a ambos lados

3 Tamaño [mm]

□ 125

□ 160

□ 200

□ 250□ 315

400

4 Accesorios

Sin código: vacío

☐ **GK** Bridas de unión a ambos lados

5 Accesorios de control

Ejemplo

☐ **BB3** Controlador Universal con transductor de presión diferencial estática

6 Modo de funcionamiento

☐ **E** Individual

☐ M Maestro

□ S Esclavo□ F Valor constante

7 Tensión de alimentación

Para señales de mando y valor real

□ **0** 0 − 10 V DC

□ **2** 2 − 10 V DC

8 Caudales de aire [m³/h o l/s]

 $\dot{V}_{min} - \dot{V}_{máx}$ ajustados en fábrica

9 Posición de la compuerta de regulación

Sólo con servomotores con muelle de retorno

 \square NO Sin tensión compuerta abierta

□ NC Sin tensión compuerta cerrada

Información general y definiciones

Caudal de aire variable - VARYCONTROL

- Selección de producto
- Dimensiones pricipales
- Definiciones
- Valores de corrección para el sistema de atenuación
- Mediciones
- Ejemplo dimensionado y selección
- Funcionamiento
- Modos de funcionamiento

Caudal de aire variable – VARYCONTROL Información general y definiciones

Selección de producto

		Serie										
	LVC	TVR	TVJ	TVT	TZ-Silenzio	TA-Silenzio	TVZ	TVA	TVM	TVRK	TVLK	TVR-Ex
Tipo de sistema	1								1			
Impulsión de aire		•	•	•	•		•			•		
Aire de retorno	•	•	•	•		•		•		•	•	•
Doble conducto (impulsión de aire)									•			
Conexión a conducto, ve	ntilador e	n un extr	emo									
Circular	•	•					•	•	•	•	•	•
Rectangular			•	•	•	•						
Rango de caudales de ai	re											
Hasta [m³/h]	1080	6050	36360	36360	3025	3025	6050	6050	6050	6050	1295	6050
Hasta [I/s]	300	1680	10100	10100	840	840	1680	1680	1680	1680	360	1680
Calidad de aire		1	1	1				1		1		
Filtrado	•	•	•	•	•	•	•		•	•	•	•
Oficina con aire de retorno	•	•	•	•		•		•		•	•	•
Con polución		0	0	0		0		0		•	•	0
Contaminado										•	•	
Tipo de control												
Variable	•	•	•	•	•	•	•	•	•	•	•	•
Constante	•	•	•	•	•	•	•	•		•	•	•
Mín/Máx	•	•	•	•	•	•	•	•	•	•	•	•
Control de la diferencia de presión		0	0	0	0	0	0	0		0		0
Master/Slave	•	•	•	•	•	•	•	•	Master	•	•	•
Estanqueidad												
Con fugas			•									
Estanco	•	•		•	•	•	•	•	•	•	•	•
Nivel de exigencia acúst	ica		,									
Elevado < 40 dB(A)			0	0	•	•	•	•	0			
Bajo < 50 dB(A)	•	•	•	•	•	•	•	•	•	•	•	•
Otras funciones												
Medición del caudal de aire	•	•	•	•	•	•	•	•	•	•	•	•
Áreas especiales												
Potentially explosive atmospheres												•
Laboratorios, salas blancas, quirófanos, (EASYLAB, TCU-LON II)		•	•	•			•	•		•	•	
•	Posible											
0	Permitido an	te determinad	das condicion	es: Ejecución	robusta y/o actua	dor específico o ur	n producto a	adicional úti	I			
	No es posibl	е										

K5 – 1.5 – 2 **TROX** *TECHNIK 04/2013 – DE/es

Caudal de aire variable – VARYCONTROL Información general y definiciones

Dimensiones pricipales

ØD [mm]

Unidades terminales VAV fabricadas en acero inoxidable: Diámetro exterior del cuello de conexión

Unidades terminales VAV fabricadas en plástico: Diámetro interior del cuello de conexión

ØD₁ [mm]

Diámetro exterior de las bridas

$ØD_2$ [mm]

Diámetro exterior de las bridas

$\emptyset D_4$ [mm]

Diámetro interior para los taladros de la brida

Longitud de la unidad incluyendo el cuello

L₁ [mm]

Longitud de la carcasa o del revestimiento acústico

W [mm]

Anchura del conducto

Separación entre taladros en el perfil del conducto de aire (horizontal)

Definiciones

f_m [Hz]

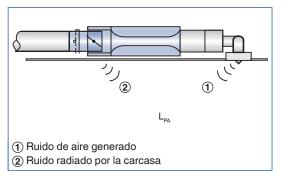
Frecuencia central por banda de octava

$L_{PA}[dB(A)]$

Ruido de aire generado por una unidad terminal VAV, teniendo en cuenta la atenuación del sistema en dB (A)

L_{PA1} [dB(A)]

Ruido de aire generado por una unidad terminal VAV con silenciador secundario. teniendo en cuenta la atenuación del sistema en dB (A)


$L_{PA2}[dB(A)]$

Ruido radiado por la carcasa de una unidad terminal VAV, teniendo en cuenta la atenuación del sistema en dB (A)

L_{PA3} [dB(A)]

Ruido radiado por la carcasa de una unidad terminal VAV con revestimiento acústico, teniendo en cuenta la atenuación del sistema en dB (A)

Definición de ruido

B₂ [mm]

Dimensión exterior del perfil del conducto de aire (anchura)

B_3 [mm]

Anchura de unidad

H [mm]

Altura de conducto

H₁ [mm]

Separación entre taladros en el perfil del conducto de aire (vertical)

H_2 [mm]

Dimensión exterior del perfil del conducto de aire (altura)

H_3 [mm]

Altura de la unidad

Número de taladros por brida

T [mm]

Anchura de brida

Peso de la unidad incluyendo un mínimo exigido de accesorios (p.e. Controlador compacto)

\dot{V}_{nom} [m³/h] y [l/s]

Caudal nominal de aire (100 %)

\dot{V} [m³/h] y [l/s]

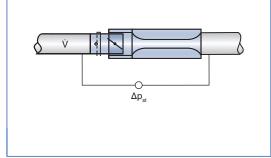
Caudal de aire

Δ['] [± %]

Precisión de control

 $\Delta\dot{V}_{caliente}$ [± %] Precisión en el control del caudal del flujo de aire caliente en unidades terminales VAV de doble conducto

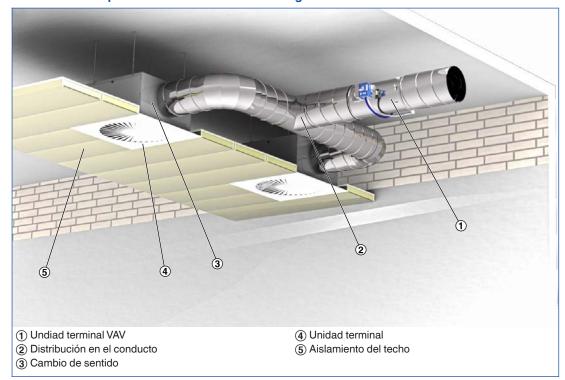
Δp_{st} [Pa]


Presión diferencial estática

Δp_{st mín} [Pa]

Presión diferencial estática mínima

Todos los niveles de presión sonora están basados en 20 µPa.


Presión diferencial estática

Información general y definiciones

Las tablas de selección rápida proporcionan los niveles de presión sonora que se pueden alcanzar en el local tanto para el ruido de aire generado y para el ruido radiado por la carcasa. La presión sonora en un sala es el resultado de la potencia sonora de los productos para un caudal de aire de partida y la presión diferencial - y la atenuación y el aislamiento en obra. Por lo que habitualmente se tiene en cuenta, tanto las los valores de atenuación como los de aislamiento. La presión sonora del ruido de aire generado se ve afectada por la distribución del aire en la red de conductos, los cambios de sentido, las unidades terminales y la atenuación de la sala.El aislamiento del techo y la atenuación de la sala influyen en la presión sonora del ruido radiado por la carcasa.

Reducción de la presión sonora del ruido de aier generado

Valores de corrección para las tablas rápidas de selección acústica

Los valores de corrección para la distribución en la red de conductos están basados en el número de difusores asignados a cada unidad terminal. Si solamente hay un único difusor (se supone: 140 l/s ó 500 m³/h) no se precisa corrección.

Un cambio de sentido, p.e. en la conexión horizontal del plenum del difusor, teniendo en cuenta la atenuación del sistema. La conexión vertical del plenum no afecta en el sistema de atenuación. Los cambios adicionales de sentido afectan a presiones sonoras más bajas

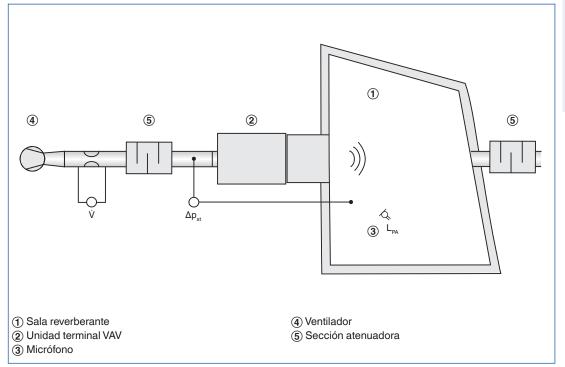
Para calcular el ruido de aire generado se emplea la corrección por banda de octava en la red de conductos.

[∨] [m³/h]	500	1000	1500	2000	2500	3000	4000	5000
[l/s]	140	280	420	550	700	840	1100	1400
[dB]	0	3	5	6	7	8	9	10

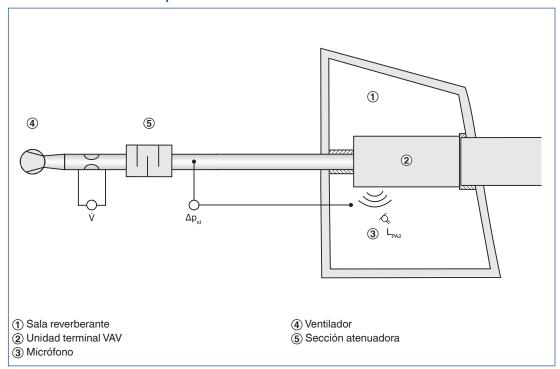
Atenuación del sistema por banda de octava en cumplimiento con VDI 2081 para el cálculo de ruido de aire generado

Francis	63	125	250	500	1000	2000	4000	8000	
Frecuencia central [Hz]	ΔL								
ochtrar [HZ]	dB								
Cambio de sentido	0	0	1	2	3	3	3	3	
Unidad terminal	10	5	2	0	0	0	0	0	
Atenuación de sala	5	5	5	5	5	5	5	5	

Corrección por banda de octava para el cálculo del ruido radiado por la carcasa


F	63	125	250	500	1000	2000	4000	8000
Frecuencia central [Hz]	ΔL							
central [112]	dB							
Aislamiento de techo	4	4	4	4	4	4	4	4
Atenuación de sala	5	5	5	5	5	5	5	5

Caudal de aire variable – VARYCONTROL Información general y definiciones


Mediciones

Los datos acústicos para el ruido de aire generado y el ruido radiado por la carcasa se determinan en cumplimiento con EN ISO 5135. Todas las mediciones se realizan en sala reverberante en cumplimiento con EN ISO 3741.

Medición del ruido de aire generado

Medición del ruido radiado por la carcasa

Caudal de aire variable – VARYCONTROL Información general y definiciones

Selección con la ayuda de este catálogo

Este catálogo ofrece tablas de selección rápida para unidades terminales de aire VAV. Se muestran niveles de presión sonora del ruido de aire generado y del ruido radiado por la carcasa para todos los tamaños nominales. Además, se tienen en cuenta valores de atenuación acústica y aislamiento. Otros caudales de aire y presiones diferenciales se pueden definir de manera sencilla y precisa con el programa de selección Easy Product Finder.

Ejemplo de selección

Datos iniciales

 $\dot{V}_{máx}$ = 280 l/s (1010 m³/h) Δp_{st} = 150 Pa Nivel de presión sonora deseado en la sala 30 dB(A)

Selección rápida

TVZ-D/200

Ruido de aire generado $L_{PA} = 23 \text{ dB(A)}$ Ruido radiado por la carcasa $L_{PA} = 24 \text{ dB(A)}$


Nivel de presión sonora de la sala = 27 dB(A) (suma logarítima con la unidad terminal suspendida del techo de la sala)

Easy Product Finder

Easy Product Finder permite el cálculo de otros productos mediante la introducción de parámetros personalizados.

Podrá encontrar Easy Product Finder en nuestra página web.

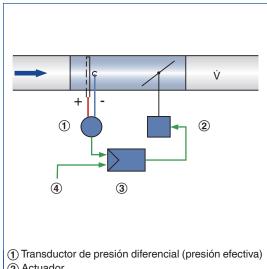
TROX TECHNIK

Caudal de aire variable – VARYCONTROL Información general y definiciones

Funcionamiento

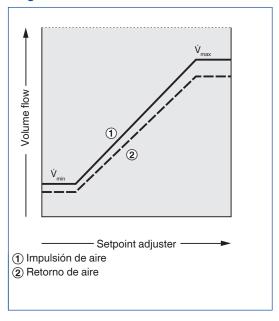
Control de caudal de aire

El caudal de aire se controla en circuito cerrado. El controlador recibe del transductor la señal de valor real como resultado de la medición de presión efectiva. En la mayoría de las aplicaciones, el valor del punto de consigna proviene de un regulador de temperatura de sala. El controlador compara el valor real con el de consigna, y modifica la señal de regulación del servomotor en caso de que exista una diferencia entre ambos valores.


Corrección de un cambio en la presión existente en el conducto

El controlador detecta y corrige la desviación de la presión existente en el conducto, provocada por ejemplo, por un cambio de caudal entre unidades. Para que de este modo, un cambio de presión no afecte en la temperatura de la sala.

Caudal de aire variable


Si la señal de entrada se modifica, el controlador ajusta el caudal de aire al nuevo valor de ajuste. Rango de caudal de aire variable, existirá un caudal mínimo y un caudal máximo de aire. Esta estrategia de control podrá anularse, p.e. con el cierre del conducto.

Circuito de control

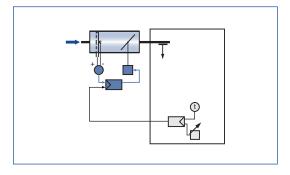
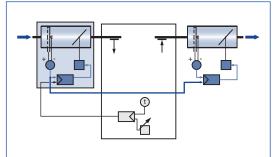
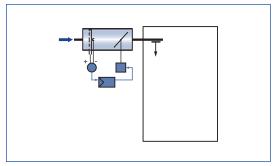
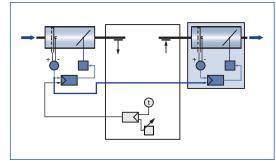

- (2) Actuador
- 3 Controlador de caudal de aire
- 4 Valor de consigna

Diagrama de control



Modos de funcionamiento


Funcionamiento individual


Funcionamiento maestro esclavo (maestro)

Valor constante

Funcionamiento maestro esclavo (esclavo)

